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The evolution of disturbances in an Ekman boundary layer 
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A linear model of a wave packet in a laminar Ekman boundary layer is proposed for 
tracing the development of an initially localized pulsed perturbation at  the boundary. 
The model disturbancewas built up from alinear combination ofgrowingmodessummed 
numerically over all wavenumbers and frequencies. The input spectrum was assumed 
to be flat so that there was no biasing at any wavenumber or frequency and the evolu- 
tion was calculated on the basis of linear-stability theory. The wave packet generated 
by the summation of modes developed uniformly downstream of the disturbance source 
location and, depending upon the choice of the Reynolds number, vividly displayed 
results representative of the different kinds of instabilities that are present in the Ekman 
layer. Outputs in the form of perspective plots are given in order to explain the evolu- 
tion of the packet into either a single wave patch or a sum of individual wave patches. 

1. Introduction 
Interest in initial-value problems arisesnaturally out of the considerationsof classical 

stability theory. Such theory is concerned with the stability of small perturbations, the 
simplest of which is a small-amplitude wave imposed upon a mean flow. Once the be- 
haviour of the waves has been determined, it is logical to ask what might occur if the 
original disturbance is of a more general form. The question of how such adisturbance de- 
velops and what form it may ultimately assume becomes the central issue of the problem. 

To a large extent, the theoretical work that has been done on the growth rates of 
simple, two-dimensional waves for boundary layers was validated by the experi- 
mental work of Schubauer & Skramstad (1948). I n  these experiments the growth 
rates and propagation velocities of disturbances in a flat-plate boundary layer were 
measured and reasonable agreement with the theoretical calculations that were made 
by Schlichting (1935), based on a quasi-parallel flow treatment, were obtained. The 
disturbances that occur naturally in such boundary layers are more likely to  be of a 
three-dimensional nature, however. Indeed, this has been demonstrated by Klebanoff, 
Tidstrom & Sargent ( 1962). Further, the transition process from laminar to turbulent 
flow, a phenomenon that has motivated much of the study of the initial-value problem, 
is highly three-dimensional. I n  view of these facts, the study of what occurs after the 
inception of a three-dimensional disturbance, such as a pulse, becomes very attractive. 

Investigation of a three-dimensional disturbance in non-rotating flows has been 
well treated. For example, Criminale ( 1960) considered the general three-dimensional 
problem. Benjamin (1961) explored the flow down an inclined plate. Criminale & 
Kovasznay (1962) treated the problem of a disturbance in a flat-plate Blasius 
boundary layer. The case of a two-dimensional unbounded parallel flow was considered 
by Gaster & Davey (1968). 
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More recent work includes the important experimental work of Gaster & Grant 
(1975). In  this experiment, a pulse-like disturbance was introduced into a flat-plate 
boundary layer, and the resulting velocities measured at a number of downstream 
stations. The results, for the initial period a t  least, agreed very well with a theoretical 
model of the phenomenon given by Gaster (1975). 

There should be little doubt as to the importance of the method. Generally speaking, 
however, the work has not come easily. The calculations cannot be made using stan- 
dard eigenfunction expansions, as is common with initial-value, boundary-value 
problems. Even more to the point, not all the possible modes have been determined 
for any flow stability. The boundary layer, where most of the experimental informa- 
tion is known, has only very recently had the complete eigenvalue spectrum investi- 
gated. I n  particular there is the numerical work of Mack (1976), with Gustavsson 
( 1979) considering the effects by Laplace-transform methods. 

The present case differs from these previous investigations in that the mean flow 
under consideration is that of a rotating boundary layer. Although rotation causes 
the mean flow to be 6hree-dimensional, along with attendant difficulties, there are 
several features that make this problem attractive. 

First, there is the fact that  the velocity profile of the rotating boundary layer, the 
Ekman spiral, is an exact solution to the Navier-Stokes equation. Second, the 
Ekman-layer flow is strictly parallel. There is no downstream growth of the boundary 
layer, obviating any need either to make a local parallel-flow assumption in order to  
obtain eigenvalues, or to  take into account the downstream change of Reynolds 
number in the study of the disturbance development, as has been essential in the 
studies of a Blasius boundary layer. 

Finally, there is the fact that  this flow supports more than one type of instability, 
depending upon the Reynolds number of the flow. The basis was presented by Lilly 
(1966). Although classical stability theory tends to focus on the problem of a critical 
Reynolds number, i t  should be recognized that a laminar flow may be established a t  a 
Reynolds number higher than the critical value. If the linear initial-value problem is 
to  be used in understanding the initial stages of transition, it should be understood 
that these initial stages can differ for different values of Reynolds number. 

2. Solution of the stability problem 
The system under consideration is motion in a rotating, homogeneous, incompres- 

sible, viscous fluid. The appropriate equations of motion together with the incom- 
pressibility condition are 

au av au, 
-+-+-= 0, ax ay ax  J 
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where 5, 3 and W are the velocities in the x-,  y- and z-directions, respectively, and the 
co-ordinate system is right-handed with z directed positive upward. The other quan- 
tities are the pressure 3, the constant density p, the Coriolis parameter f and the 
kinematic viscosity v. The unknown quantities are now regarded as being the sum 
of a mean and a fluctuating part, namely 

The mean quantities are time-independent. The fluctuating portion is taken as a 
perturbation on that mean with the assumption that the amplitudes of the perturba- 
tions and the derivatives of these amplitudes are small enough to  allow for lineariza- 
tion. Solutions of (2.1) for the time-independent mean flow form the familiar Ekman 
velocity profile or u = U,[1 - e-c(f/Zv)* cos ( z ( f / 2 v ) q ] ,  

v = Uge-z(f/2v)* sin ( z ( j / 2 v ) + ) ,  
w = 0) 

with Ug the geostrophic velocity. 
The disturbance equations are formed by substituting the expressions in (2.2) into 

(2.1) and subtracting the mean flow. Ignoring all nonlinear terms, the following 
svstem results : 

- 
ap + VV2U) ' 

-+ u-+ v-+w-  +fu = -2 2+vv2v,  

au . au au au - + u-+ v- +w- -fv = - - 
at ax ay az P ax 
au av av av - 
at ax .ay az P aY 

aw aw aw - 
at ax ay p ax 

au av aw -+-+-= 0, 
ax ay a2 

-+ u-+ v- = -2 2 + v v z w ,  

with 

(2.3) 

The appropriate boundary conditions are 

u = v = w = O  a t  z = O ;  u,v,w+O as z - foo .  

The perturbations are now assumed to be of the form 

(and similar forms for v, w,  p ) .  This solution form is a double Fourier decomposition 
(where a and y are respectively the x- and y-components of the wavenumber vector) 
coupled with the normal-mode assumption (where w is the complex frequency). 
Substituting into (2.3), non-dimensionalizing with the bases U,, and the length scale 
( v / f ) * ,  and performing other operations yields a coupled set of ordinary differential 

(2.4) 
equations, namely: L(8) = F(.ii), M ( C )  = a(&). 
The operations required to obtain (2.4) are (a) change of variable and ( b )  elimination 
of the pressure. Specifically, in the (2, y)-plane ((a, 7)-plane) changing from Cartesian 
to  polar co-ordinates allows 

3 = a2+y2, = arctan ( y l a ) ,  (2.5) 
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diE = y.li-aa, &U= y u - a v ,  
db = a.iL+y;it, &ip= a u - t y v .  

The form (2.4) differs from that of Lilly (1966) on two counts. First, the angle $ used 
for orientation in the present work is the angle between the geostrophic velocity and 
the wavenumber vector. Lilly preferred the angle (6 in his notation) between the 
geostrophic velocity and the disturbance wave front. The two are related by 

Second, the length scale employed in the present work is (v/f)*. Hence a factor of 
different from the Lilly values must be expected. Accordingly, Reynolds numbers, 

wavenumbers and frequencies given herein must be multiplied by the factor 4 2  in 
order to  make direct comparisons with the Lilly results. 

The pair of equations (2.4) forms the basis for the analysis of this problem. These 
equations, along with the boundary conditions, form an eigenvalue problem that 
involves a relation between the Reynolds number R, the wavenumbers a and y,  and 
the complex frequency w. Instability or stability depends upon whether or not the 
imaginary part of w is positive or negative. I n  point of fact, the system (2.4) was 
combined to form one equation for 8, which was solved numerically using a standard 
shooting technique. On the other hand, the coupled pair facilitates both the discussion 
and the interpretation of the results. Comparison can, of course, be made with Lilly’s 
presentation. The present method has, however, the advantage of allowing the 
application of the true boundary conditions a t  infinity for a disturbance in a boundary 
layer. 

Q = a+&r.  

3. Discussion of the eigenvalues 
Contours of real (w,)  and imaginary ( w i )  parts of w as a function of a and y at  fixed 

R are plotted in figure 1. These results are well documented by Lilly (1966), and the 
features of interest will be discussed briefly. 

At R = 45, the contours of wi are roughly elliptical, centred around a single maxi- 
mum at  DL = 0-075 and y = 0.205. This maximum is associated with a mode of 
instability that Lilly (1966) referred to as the parallel mode. It is technically a viscous 
mode in that i t  vanishes a t  high Reynolds numbers. (This statement should be inter- 
preted as meaning that wi+  0 as R+co.) The origin stems from rotation in the prob- 
lem and energy is supplied by means of the component of mean shear that is parallel 
to the disturbance wave front. 

At R = 105, the situation becomes more complicated. The region of instability is 
no longer a single ellipse, but instead the contours of show two maxima, one 
centred at a = 0-037, y = 0.1948 and a second centred a t  a = -0.062, y = 0.3815. 
The first extremum can still be shown to be associated with the parallel instability. 
The second appears to be associated with inflection points in the mean profile. 

At R = 350, there is once again only a single maximum in the region of instability, 
centred at  a = -0.0818 and y = 0.34. The mechanism of instability present at  this 
Reynolds number is the inflection-point type and therefore inertial in origin. 
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4. Formal statement of the initial-value problem 
Having examined the solutions to the classical stability problem, the growth and 

development of a more generalized disturbance will now be considered. Recall the 
perturbation equations for a small, fluctuating disturbance (2.3).  The coefficients of 
this set of homogeneous differer.tia.1 equations are functions of x alone, and, if i t  is 
assumed that the perturbation quantities are absolutely integrable in the horizontal, 
(2.3) can be Fourier-transformed by 

The inverse transformation is then 

$(a ,y ; x , t )  = u ( x ,  y ;  x ,  t )  ei(ax+yy)dx dy.  

Similar expressions hold for v, w and p .  
The transformed system still consists of partial differential equations in z and t .  In  

order to solve the system, it is desirable to assume some form for the time dependence, 
resulting in a set of ordinary differential equations in z .  

I n  the preceding discussion of the classical stability problem, i t  was noted that 
solutions of the problem could be obtained by the method of normal modes. That is, 
the perturbations were assumed to be solvable by a superposition of solutions of the 
form 

W 

;(a, y ;  z ,  t )  = c a, .li,(z; a ,  y )  e - i w J .  
n=O 

Such a substitution led to the eigenvalue problem, with w playing the role of the eigen- 
value. For a given set of a, y and R, there may well be an infinite set of such eigen- 
values. The a, are amplitude coefficients determined by the initial conditions. 

It should be noted that this form of solut,ion does not necessarily yield the complete 
set of eigenvalues and eigenfunctions for the problem. If the time dependence is 
eliminated by means of a Laplace transform, the contour integral that  must be in- 
verted to  find the time dependence of the solution may hiLve contributions from 
sources other than the isolated singularities representing the normal modes. This 
aspect of the subject has not been exploited for this problem as has been done by 
Gustavsson (1979) for the Blasius layer, for example. 

Presumably, if one possessed the entire set of eigenfunctions for this problem, was 
assured that they formed a complete set, and had the proper orthogonality conditions, 
a completely arbitrary initial disturbance could be represented as the properly 
weighted sum of those eigenfunctions, and its development could be traced. This 
most-general problem will not be addressed. Instead, several assumptions will be 
introduced because it is not possible to follow this route. I n  fact, an alternative 
problem must be posed. 

First, although there may well be an infinite set of eigenvalues and, hence, eigen- 
functions for a given set of parameters, only the most unstable mode will be con- 
sidered. This means that all of the growing modes will be included. Such an approxi- 
mation may lead to  inaccuracies a t  early times, where any initial disturbance with a 
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given set of wavelengths may excite all possible modes of behaviour. Lack of know- 
ledge about the eigenvalue spectrum along with its attendant eigenfunctions, how- 
ever, makes this approximation necessary. 

Second, the arbitrary z-dependence of the initial disturbance will have to be 
dropped. In effect, the disturbance will only be considered a t  a given level in the 
boundary layer. This is the same approach employed by Criminale & Kovasznay 
(1962) and Gaster (1975) in their studies of the initial-value problem in a Blasius 
boundary layer. 

Finally, an input spectrum will be assumed such that the initial disturbance has 
the form of a pulse when describing the vertical velocity component. I n  its ideal form, 
the amplitude coefficients of the pulse will be non-biased across the Fourier spectrum. 
This suggested form will vary somewhat with the different approximations dis- 
cussed, but, in all cases, the initial disturbance will very closely approximate a pulse 
a t  a given level in the flow. Of course, since the system is linear, any other generalized 
disturbance can be built up from the sum of the unit pulses. 

5. Discussion of the short-time problem 
It would be desirable to  begin the analysis of the general problem by examining 

what occurs immediately after the inception of the initial disturbance. Unfortunately, 
it is a t  short times that the lack of knowledge about the entire set of eigenvalues is 
felt most severely. At such short times, before the damped modes have a chance to 
die out, the behaviour of all possible modes should be taken into account in order to 
give a true picture of the disturbance behaviour. The exact nature of all these modes 
is unknown for the Ekman problem. Mack (197G), Murdock & Stewartson (1977) and 
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R a *a Y *Y 
45 - 0'030-0.1 80 0.03 - 0'070-0'340 0.03 

105 - 0.260-0.235 0.045 - 0.035-0.640 0.045 
350 - 0.440- 0.535 0.065 - 0.240-0.800 0.065 

TABLE 1 

R Aa 4 
45 0.015 0.015 

105 0.014 0.014 
350 0.020 0.020 

TABLE 2 

Gustavsson (1979) have examined the case of the Orr-Sommerfeld equation for the 
Blasius layer and have presented evidence that the eigenvalues consist of a con- 
tinuous spectrum as well as the discrete set of eigenvalues. The present perturbation 
problem has many features in common with the Orr-Sommerfeld equation and there- 
fore there is reason to  suspect that  a similar distribution of eigenvalues should exist 
for the Ekman layer. Clearly, the present state of knowledge concerning the distribu- 
tion of eigenvalues for the Ekman problem is insufficient to present a detailed descrip- 
tion of the disturbance a t  short times. 

6. Intermediate time 
For non-dimensional times between t = 25 and t = 1000, the initial disturbance 

was represented as a finite double Fourier series with amplitude coefficients identically 
equal to  unity, Thus, in this aspect of the analysis, the input spectrum of the dis- 
turbance had a square-wave form, being of unit magnitude over the modes which were 
summed and assumed to be zero elsewhere. All growing modes were included. The 
form of the disturbance was therefore 

This expression for w was evaluated directly over the range of wavenumbers a t  the 
spacings given in table 1. 

A signal represented by a series of the form C$=,, cos (A,+nAA)x will be aliased 
over a distance 2n/AA.  Since the set of eigenvalues given above was to be used to 
calculate w in the (2, y)-plane, it was desirable to  have this distance large enough to 
prevent distortion of the plots by aliasing. To accomplish this, the set of eigenvalues 
was interpolated by means of a standard interpolation routine available in the soft- 
ware package of the National Maritime Institute, England. A new set of eigenvalues 
was produced with identical ranges but smaller spacings; see table 2 .  

Such a procedure is not entirely free from undesirable consequences. The inter- 
polation is being performed under the assumption that the known eigenvalues give 
a good representation of the eigenvalue surface as a function of R, 01 and y ,  and that 
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this surface is sufficiently smooth to allow accurate portrayal by the set of interpolated 
eigenvalues. Since i t  is not expected that such an interpolation will yield eigenvalues 
to the accuracy of those calculated directly by integration, the procedure will, in fact, 
introduce inaccuracies. Interpolation was the only practical method for extending the 
eigenvalue set, however, as direct calculation of the eigenvalues was quite time- 
consuming. It is felt that distortions caused by the use of this process will be minimal. 

A further possibility of inaccuracy lies in representing by means of a finite Fourier 
series a phenomenon which is actually a Fourier integral. The truncation of the series, 
for example, results in a ‘ringing’ present a t  short times. As a result, the presence of 
small-amplitude waves appearing to  propagate out from the wave packet are clearly 
visible. These distortions disappear as time increases and the growth of the amplitude 
coefficients causes a smoothing of the ends of the Fourier spectrum. 

There is also the fact that  such a disturbance is really not the sum of discrete modes, 
and, as such, would differ from the Fourier-series representation of its measured 
signal. 

Interpolation was also necessary to create the perspective plots of w obtained by 
evaluating (6.1) over the given ranges of cc and y. The original grid of points in the 
(w, y)-plane proved too sparse to obtain fine detail in the representation of the wave 
packet. Closely spaced lines in the perspective plot are necessary to obtain this detail 
by means of a shadowing effect. The values of (6.1) were therefore interpolated by 
means of the same program used to interpolate the eigenvalues. The spacing of grid 
points in the (2 ,  y)-plane was halved, thus producing a much more satisfactory repre- 
sentation of the wave packet. 

Figure 2 shows the results for three different times in each of the three Reynolds- 
number cases. These are perspective plots of w(x, y, t )  a t  a given level of the flow. The 
dependence of the initial-value problem on Reynolds number is clearly revealed. 

For R = 45, much of the pulse-like nature of the disturbance has already been lost 
by t = 25. This is due, in part, to the relatively few modes included in the summation 
(actual count is 285). On the other hand, the region of instability for this Reynolds 
number is much smaller than those for higher values, and, since only a relatively few 
modes do not dampen, what is seen is representative of the nature of the region of 
instability. 

For short time, the dominant wave will be the one whose wavenumbers are located 
at  the centre of the rectangular input spectrum. The location coincides closely with 
the most growing mode for the R = 45 case. As time progresses, therefore, little 
change is observed in the lines of constant phase. The orientation remains almost 
constant and represents the most growing mode; in the R = 45 case, it is the parallel 
mode. The contours of the modulus of the wave packet develop toward oblique 
ellipses. 

At R = 105, both the inflection point and the parallel modes are present and the 
double maxima are mirrored in the development of the disturbance. As time pro- 
gresses, the disturbance takes on the form of two overlapping wave packets, one 
representing the inflection-point mode and the other representing the parallel mode. 

By R = 350, only the inflection-point mode is present. The large area of instability 
results in a disturbance with a bowed appearance a t  times less than about t = 300 but, 
after that, the disturbance again assumes the form of an elliptical wave packet whose 
dominant wave is the most growing. 
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FIGURE 2. For legend see p. 340. 
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FIGURE 2. For legend see p. 340. 
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FIQURE 2. For legend see p. 340. 
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(102, -28) 
FIGURE 2.  Perspective plots of w, for different values of R and of the non-dimensional time t .  
(a) R = 45, t = 25;  ( b )  45, 400; (c )  45, 700; ( d )  105, 25;  ( e )  105, 200; (f) 105, 700; (9) 350, 2 5 ;  
(h)  350, 300; ( i )  350, 400. The horizontal co-ordinates of the lower right-hand corner of the grid 
are given in units of non-dimensional length with respect to the centre of the disturbance at 
t = 0. A grid space represents two units of non-dimensional length. 

7. Asymptotic evaluation 
It is now desired to evaluate the integral 

J - m  J --m 

for very large time. For purposes of the analysis, it will be possible for the disturbance 
to have the form of a true pulse. The amplitude coefficients will be totally non-biased 
initially, and a flat input spectrum will be assumed. The initial amplitude a(a, y )  will 
therefore be identically equal to unity. 

It is reasonable to assume that analytic continuation will allow w to be written as 
a complex function of the now complex parameters a: and y. The integral may then 
be taken over a contour in complex (a ,  7)-space and written as 

The integral is now in a suitable form to apply the method of steepest descent (see 
e.g. Erdklyi 1956). This results in the following approximation for I :  
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where 

1 aw, aw, [ Oaar ay, 
C ,  = expit a -+yo--wwo , 

wo = w(ao, yo) or the saddle-point location. 

Here 8 = arctan m, where m is the tangent of an acute angle and is a solution of the 
following quadratic equation: 

The derivatives are evaluated a t  (a,,, yo).  
Lack of information on the complete complex dispersion relation restricts this 

method to real values of x l t  and ylt. Thus the only information which can be obtained 
lies along rays representing modes whose growth rates are extrema in real wavenumber 
space. Along such rays, where 

- !! = 0.1 
t = aar (a,,y,,) ’ t ayr (all,yo)’ 

the wave has an amplitude inversely proportional to time. It will have wavenumbers 
and frequency equal to ao, yo and wo, respectively. 

More information can be obtained with a slight relaxation of rigour. If a and y are 
once again considered to be real parameters, a simple expansion about the maximum 
value of wi  yields the following expression: 

A,, B, and 8 are as previously defined, while 

The above expression shows that the asymptotic wave packet is an ellipse whose 
axes are parallel to the rotated co-ordinate axes 3 and jj. The ratio of the axis in the 
5-direction to that in the y-direction is 

E = (A,/B,)$. 

8. Summary of results of the initial-value problem 
The preceding sections have made use of several different approximations in order 

to  determine the time behaviour of a pulse-like initial disturbance. Any other 
small-amplitude initial disturbance can be formed by superposition of such pulses. 
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With this accomplished, it is now possible to answer the following general questions 
for the problem. 

(1) What is the initial change in the form of the disturbance? 
(2) What is the time development of the significant bandwidth of the disturbance 

(3) How quickly does the initial disturbance assume the form dictated by the most 

(4) What is the group velocity of the disturbance? 
( 5 )  What is the asymptotic form that the disturbance can be expected to assume 2 
(6)  How do the above questions depend upon the Reynolds number 2 
Although lack of information precludes a detailed analysis of the short-time 

behaviour of an initial disturbance, an educated guess as to the general form of this 
behaviour can be made. If a very flat initial spectrum is assumed, there will be a large 
amount of energy present in damped modes. This energy will decrease after t = 0, 
and the growing modes will be unable to  compensate for the loss immediately. 
The loss of energy will have two effects. First, it will cause an initial drop in 
the amplitude of the disturbance. Secondly, it will effectively decrease the band- 
width of the amplitude spectrum, resulting in a spreading of the pulse in physical 
space. 

I n  the case of a Blasius laminar boundary layer, the most-amplified disturbance 
does not have a cross-stream component in its wavenumber vector. Thus, a pulse 
imposed upon such a mean flow will ultimately assume the form of a wave packet 
whose component waves have crests perpendicular to the mean flow and possess the 
physical characteristics of the most-growing wave, nonlinearities permitting. An 
important question in this case is: how quickly does the initial disturbance assume 
this form? While such two-dimensionality is precluded in the present case, both by 
the nature of the mean flow and by the orientation of the most-amplified waves, i t  is 
nevertheless of interest to  examine the questions of how quickly the disturbance 
approaches the forms dictated by the most-growing modes. 

I n  the case of an idealized pulse with a non-biased initial amplitude of unit value, 
the amplitude spectrum of the disturbance will have the form 

in wave space 1 

growing mode 2 

A ( a , y )  = ewi(a*y)t. 

Thus, for any time greater than t = 0,  the maximum values of A will be located at  the 
point or points in wavenumber space that represent maxima of wi .  These maxima, 
therefore, cannot be used to indicate how quickly the disturbance is approaching the 
state dictated by them. A better indicator of this behaviour is the bandwidth of the 
amplitude spectrum around the most-amplified modes. As time progresses, differen- 
tial growth will cause the amplitude of this area to assume greater and greater relief. 
Contributions to the disturbance, then, can be regarded as coming from a localized 
region surrounding these modes. The smaller the region becomes, the more the dis- 
turbance will resemble a wave train of the most-growing waves. The inverse of the 
bandwidth can also be thought of as an indication of how many oscillations are 
contained in the wave packet. 

The A2(a ,y)  = 0.3 contours of the power spectra normalized on the maximum 
value were chosen to  represent the bandwidth of the disturbance. This is slightly 
lower in value than a contour representing the e-folding distance of the distribution 
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0 : 100 200 300 400 500 600 700 800 

Non-dimensional time. t 

O '  I d 0  2b0 360 4AO 5bO 6b0 7b0 8!0 

FIQURE 3. Wave-packet bandwidths for [u) R = 45 (--) and 350 (---); 
( b )  R = 105 (-, mixed mode; ---, parallel mode). 

Non-dimensional time, t 

(e-lAmax = 0.37Ama,). Figure 3 shows plots of the bandwidths of these contours in 
the a- and y-directions. 

Two items of interest can be obtained from these plots. First, it can be seen that in 
all cases, while there is an initial period in which the drop in the bandwidth is rather 
rapid, the rate of decrease slows considerably for larger times. A notable bandwidth 
remains at t = 700, indicating that at none of the Reynolds numbers is there a close 
approach to a pure wave train. This conclusion is, of course, substantiated by examina- 
tion of the perspective plots. The width does approach zero a t  t --f 00, however, as is to 
be expected. 

The second item is that, a t  all three Reynolds numbers, the bandwidth in y remains 



344 G .  F .  Xpooner and W .  0. Criminale 
~ 

R v , X  v , Y  v,, v,, 
45 (parallel mode) 0.798 0.229 0.195 0.536 

105 (parallel mode) 0.683 0.166 0.078 0.402 
105 (inflection-point mode) 0.721 0.1 14 - 0.010 0.065 
350 (inflection-point mode) 0,610 0.108 0.019 -0'004 

TABLE 3. Components of the group velocities 1; of the wave packets and the phase velocities 
TI, of the most-amplified modes. The; z-axis is aligned with the geostrophic flow. 

larger than that in cc. This indicates that  the wave packet thus represented w7ill be 
elongated in the direction of the free stream. This is in contrast to the wave packets 
formed from a pulse in the Blasius layer. These packets are elongated in the cross- 
stream direction. 

While the behaviour of the bandwidth in wave space serves to indicate that the 
approach to a wave train is slow, examination of the perspective plots indicates that  
the adoption of the orientation and spacing of the most-growing mode by the indi- 
vidual waves in the packet is rather more rapid. The ultimate alignment occurs most 
quickly for low Reynolds number, where it has taken place by t = 300. While the 
overall picture occurs in the manner described, it is the group velocity which more 
generally governs the motion of the wave packets. Asymptotically, the packets move 
with this velocity, Vg, with components (aw,/aa, aw,/ay) defined a t  the point in 
(a,y)-space where w i  is a maximum. The packets travel with velocities closely 
approaching these values even before the asymptotic state has been reached. Table 3 
gives the components of the group velocities of the respective packets a t  different 
Reynolds numbers, along with the phase-velocity components of the most-growing 
modes. 

Regardless of the Reynolds number, the group velocity is almost parallel to the 
free-stream velocity. Noteworthy is what occurs at R = 105. It was originally thought 
that the presence of two separate modes of instability a t  this Reynolds number would 
give rise to a pair of wave packets that would disperse and go their separate ways. 
Instead, the fact that  the group velocities of the two different modes are essentially 
equal, coupled with the fact that both wave packets spread in time, results in a rather 
different picture. Instead of the two separate packet portions, calculations up to 
t = 1000 reveal a single patch of disturbance, consisting of two overlapping packets. 
Consequently, indications are that there will not be a total separation. 

A further comment concerns the drop in lVgl with Reynolds number. Such a varia- 
tion is a result of the change in distribution of growth rates with Reynolds number. 

Finally, information can be obtained from the asymptotic analysis. The ratio 
between the minor axis and the major axis of the asymptotic ellipse can be calculated 
through the use of the quantity E in 3 7.  This ratio E* is given in table 4. 

The asymptotic forms of the disturbance can be employed to  obtain an idea of the 
spreading rate of the packet. As a measure of the rate, the amount of time needed for 
the packet to spread a distance of 10 wavelengths of the most-amplified mode can be 
calculated. Two spreading times result, one for the spreading perpendicular to  the 
wave crest, TI, and one for the spreading parallel to  the wave crest, T,. If the border 
of the packet is designated as the line where the modulus falls to e-= of the maximum 
value, the results shown in table 5 are obtained. 
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R &* 

45 (parallel mode) 0.623 
105 (parallel mode) 0.675 
105 (inflection-point mode) 0.738 
350 (inflection-point mode) 0.667 

TABLE 4. Ratio of the minor axis to the major axis of the asymptotic ellipse 

R TI Tz 
45 (parallel mode) 8246 3197 

105 (parallel mode) 7432 3383 
105 (inflection-point mode) 2859 1556 
350 (inflection-point mode) 3484 1548 

TABLE 5. Time to spread ten wavelengths of the most-amplified mode in the direction 
perpendicular to the wave front, TI, and parallel to the wavefront, T, 

R TI 
45 (parallel mode) 8825 

105 (parallel mode) 6656 
105 (inflection-point mode) 9731 
350 (inflection-point mode) 9731 

TABLE 6. Absolute spreading rates perpendicular to the wave front 

The parallel modes take noticeably longer to  spread 10 of their wavelengths. In  a 
way, this is deceiving because these wavelengths are much larger for the parallel 
modes than they are for their inflection-point counterparts. If a designated half- 
width, 150 say, is used to compare spreading rates, a better idea of the relative 
rates of spreading can be obtained. This is done in table 6 for TI. 

The disturbances resulting from the parallel modes are actually spreading more 
quickly than those due to the other modes. There seems to be little difference in the 
spreading rates of the inflection-point mode a t  R = 105 and that a t  R = 350. 

Finally, it was noted that the actual amplitude of the asymptotic wave packet is 
proportional to the inverse time. This is a standard asymptotic result for a double 
integral with the functional behaviour displayed herein. 
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